Affiliation:
1. Beijing Key Laboratory of Lignocellulosic Chemistry MOE Engineering Research Center of Forestry Biomass Materials and Energy College of Materials Science and Technology Beijing Forestry University Beijing 100083 China
2. China National Pulp and Paper Research Institute Beijing 100102 China
3. State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510641 China
4. State Key Laboratory of Efficient Production of Forest Resources Beijing 100083 China
Abstract
The preparation of mechanical robust organic room‐temperature phosphorescence (RTP) materials especially with white afterglow is attractive but rarely reported. Herein, a method to produce mechanical robust colorful RTP transparent wood (PTW) by infiltrating delignified wood with poly (vinyl alcohol) solutions containing arylboronic acids with various π conjugations is reported. The doubly rigid environment provided by the B─O covalent bonds and hydrogen bonds can stabilize the triplet excitons, leading to a ultralong lifetime of up to 2.13 s and excellent RTP emission stability (without obviously quenching over a month) of the target PTW. Besides, as a promising structural material for optical applications, the PTW shows combined advantages of multicolored persistent luminescence (from blue to green and then to red), good optical transmittance (≈90%), and striking mechanical strength (≈154 MPa). More importantly, by introducing appropriate amount of fluorescent dye rhodamine 6 G to the PTW with blue afterglow, white afterglow with a lifetime of 1.85 s is successfully achieve through triplet‐to‐singlet Förster resonance energy transfer. The PTW can function as afterglow window, anticounterfeiting label, and time delay lighting. This success paves the way for the development of mechanical robust, ecofriendly, and practical RTP materials.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献