Rational Engineering of 2D Materials as Advanced Catalyst Cathodes for High‐Performance Metal–Carbon Dioxide Batteries

Author:

Liu Fu1,Zhou Jingwen12,Wang Yunhao1,Xiong Yuecheng12,Hao Fengkun1,Ma Yangbo1,Lu Pengyi12,Wang Juan1,Yin Jinwen1,Wang Guozhi12,Yu Jinli1,Yan Yan34,Zhu Zonglong1,Zeng Jie34,Fan Zhanxi125ORCID

Affiliation:

1. Department of Chemistry City University of Hong Kong Hong Kong 999077 P. R. China

2. Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM) City University of Hong Kong Hong Kong 999077 P. R. China

3. School of Chemistry & Chemical Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China

4. Hefei National Research Center for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China

5. Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China

Abstract

Given the unique characteristic of integrating CO2 conversion and renewable energy storage, metal–CO2 batteries (MCBs) are expected to become the next‐generation technology to address both environmental and energy crises. As involving complex gas–liquid–solid three‐phase interfacial reactions, cathodes of MCBs can significantly affect the overall battery operation, thus attracting much research attention. Compared to conventional materials, 2D materials offer great opportunities for the design and preparation of high‐performance catalyst cathodes, especially showing superior bifunctional electrocatalytic capacity for rechargeable MCBs. The inherent high‐specific‐surface area and diverse structural architectures of 2D materials enable their flexible and rational engineering designs toward kinetically favorable metal–CO2 electrochemistry. Herein this review, the cutting‐edge progresses of 2D materials‐based catalyst cathodes are presented in MCBs. The reaction mechanisms of various MCBs, including both nonaqueous and aqueous systems, are systematically introduced. Then, the design criteria of catalyst cathodes, and the merits and demerits of 2D materials‐based catalyst cathodes are discussed. After that, three representative engineering strategies (i.e., defect control, phase engineering, and heterostructure design) of 2D materials for high‐performance MCBs are systematically described. Finally, the current research advances are briefly summarized and the confronting challenges and opportunities for future development of advanced MCB cathodes are proposed.

Funder

National Natural Science Foundation of China

University Grants Committee

City University of Hong Kong

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3