In Situ Electrochemical Interfacial Manipulation Enabling Lithiophilic Li Metal Anode with Inorganic‐Rich Solid Electrolyte Interphases for Stable Li Metal Batteries

Author:

Kim Subin1,Cho Ki‐Yeop1,Kwon JunHwa1,Sim Kiyeon1,Eom KwangSup12ORCID,Fuller Thomas F.2

Affiliation:

1. School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi‐ro Buk‐gu Gwangju 61005 Korea

2. School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA

Abstract

Lithium‐metal anodes (LMAs) are the ultimate choice for realizing high‐energy‐density batteries; however, its use is hindered by problematic Li growth in the form of dendrites. To alleviate dendritic Li growth, the preparation of LMAs with a lithiophilic current collector (CC) is effective; however, applying a lithiophilic CC to LMAs is still challenging due to the manufacturing complexity involved in the separate lithiophilic treatment and lithiation processes. Herein, a facile one‐pot LMA fabrication method by utilizing thiourea (TU) as a precursor is proposed. A lithiophilic Cu2S layer is formed on Cu foam (CF) by the in situ electrochemical oxidation of TU (CuxSCF), and the lithiation of CC is performed via subsequent Li electrodeposition (Li@CuxSCF). The Cu2S on CuxSCF can lead to uniform Li deposition by providing lithiophilic sites, and it is converted to form ionic‐conductive Li2S‐rich solid electrolyte interphase layer. Resultantly, CuxSCF significantly enhances the cycling performance of LMAs compared to CF. Specifically, a LiFePO4/Li@CuxSCF full‐cell lithium‐metal battery (LMB) with a low n/p ratio (1.6) exhibits capacity retention of 95.6% at 0.5 C (220 cycles) and can maintain 85.0% of initial capacity (425 cycles, n/p = 4) at 2.0 C. LMBs with LiNi0.6Co0.2Mn0.2 and LiNi0.8Co0.1Mn0.1 also exhibit improved electrochemical performance.

Funder

National Research Foundation of Korea

Hyundai Motor Group

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3