Defect‐Derived Catalysis Mechanism of Electrochemical Reactions in Two‐Dimensional Carbon Materials

Author:

Han Yun12,Yan Xuecheng1,Wu Qilong3,Xu Hongzhe12,Li Qin12,Du Aijun4,Yao Xiangdong5ORCID

Affiliation:

1. Queensland Micro- and Nanotechnology Centre Griffith University Nathan Campus Brisbane QLD 4111 Australia

2. School of Engineering and Built Environment Griffith University Nathan Campus Brisbane QLD 4111 Australia

3. Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2500 Australia

4. School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology Gardens Point Campus Brisbane QLD 4001 Australia

5. School of Advanced Energy Sun Yat-Sen University (Shenzhen) Shenzhen Guangdong 518107 P. R. China

Abstract

In the past decades, remarkable progress has been achieved in the exploration of electrocatalysts with high activity, long durability, and low cost. Among these, defective graphene (DG)‐based catalysts are considered as one of the most potential substitutes for precious metal‐based electrocatalysts. DG‐based catalysts contain abundant active centers with different configurations resulting from their extraordinary high‐structural tunability. Herein, an overview on recent advancements in developing four kinds of DG‐based catalysts is presented: 1) heteroatoms‐doped graphene; 2) intrinsic DG (vacancy and topological defect); 3) nonmetal atoms or/and metal species‐modified intrinsic DG (heterogeneous species and intrinsic defects co‐tuned DG); and 4) DG‐based van der Waals‐type multilayered heterostructures. In particular, the synergistic effects between various defects are discussed, and the origin of catalytic activity is reviewed. Meanwhile, the established defect‐derived catalytic mechanism is summarized, which is beneficial for the rational design and fabrication of high‐performance electrocatalysts for practical energy‐related applications. Finally, challenges and future research directions on defect engineering in noble metal‐free materials for electrocatalysis are proposed.

Funder

Ministry of Science and Technology of the People's Republic of China

Australian Research Council

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3