Improved Performance of High‐Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li‐Ion Batteries

Author:

Zhou Bei123,An Siyu1,Kitsche David1ORCID,Dreyer Sören L.1ORCID,Wang Kai1,Huang Xiaohui1,Thanner Jannik4,Bianchini Matteo34,Brezesinski Torsten1ORCID,Breitung Ben1ORCID,Hahn Horst125ORCID,Wang Qingsong34ORCID

Affiliation:

1. Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Kaiserstr. 12 76131 Karlsruhe Germany

2. KIT‐TUD Joint Laboratory Nanomaterials Technische Universität Darmstadt Otto‐Berndt‐Str. 3 64206 Darmstadt Germany

3. Bavarian Center for Battery Technology (BayBatt) Universität Bayreuth Weiherstr. 26 95448 Bayreuth Germany

4. Department of Chemistry Universität Bayreuth Universitätsstr. 30 95447 Bayreuth Germany

5. School of Sustainable Chemical Biological and Materials Engineering University of Oklahoma 201 Stephenson Pkwy. Norman OK 73019 USA

Abstract

Lithium‐excess cation‐disordered rocksalt materials are a promising class of transition metal‐based cathodes that exhibit high specific capacity and energy density. The exceptional performance is achieved through participation of anionic redox in addition to cationic redox reactions in the electrochemistry. However, anionic redox reactions accompanied by oxygen evolution, accelerated electrolyte breakdown, and structural evolution lead to voltage hysteresis and low initial Coulombic efficiency. Herein, an Al2O3 layer with varying thickness has been coated onto a high‐entropy disordered rocksalt oxyfluoride cathode through atomic layer deposition to enhance battery performance. The results indicate that the utilization of a uniform Al2O3 coating improves the capacity retention and rate capability of the cathode, with the performance being strongly dependent on the layer thickness. Further investigation into cathode–electrolyte interfacial reactions reveals that the thin protecting Al2O3 coating can reduce the decomposition of electrolyte on the cathode surface but cannot prevent bulk phase degradation during prolonged cycling. These findings highlight the need for optimized coating design on the disordered rocksalt cathode to improve battery performance.

Funder

China Scholarship Council

Karlsruhe Institute of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3