Ultrasensitive and Visible Detection of Influenza A Virus Based on Enzymatic Properties of Layered Gold Nanoparticles

Author:

Jeong Eunji1,Park Geunseon12,Kim Jinyoung1,Lee Sojeong1,Park Chaewon1,Lim Jong‐Woo3,Yeom Minjoo3,Song Daesub3ORCID,Haam Seungjoo1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea

2. Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA

3. College of Veterinary Medicine and Research Institute for Veterinary Science Seoul National University Seoul 08826 Republic of Korea

Abstract

Considering the urgent demand for reliable and rapid detection of infectious respiratory viruses during unpredictable pandemics, an innovative ultrasensitive colorimetric immunoassay for influenza A (H1N1) virus detection is developed herein. The proposed approach leverages dual amplification by combining layer‐by‐layer interactions with the nanozyme effect of biotinylated gold nanoparticles (BGNPs). BGNPs assemble around the target via repeated incubation cycles under optimized conditions, resulting in a layered structure that increases optical density, producing a more intense signal proportional to the viral titer. Additionally, the nanozyme effect of the layered BGNPs induces oxidation of 3,3',5,5'‐tetramethylbenzidine, which further enhances the visible signal detectable by the naked eye. This synergetic nanoprobe‐based system demonstrates remarkable sensitivity, with a limit of detection of 101.29 EID50 mL−1, which is 2500‐fold higher than that of commercial rapid kits and conventional enzyme‐linked immunosorbent assays, within a rapid 55 min timeframe. Furthermore, the anti‐interference capability and portability of the developed system reinforce its practicality, making it a promising tool for field diagnostic tests that offers advanced, ultrasensitive, and early detection of respiratory viruses.

Funder

Ministry of Science and ICT, South Korea

Korea Environmental Industry and Technology Institute

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3