Thickness‐Dependent Microstructural Evolution of CsPbBr3 Nanobricks Induced by Electron Beam Irradiation

Author:

Diao Feiyu12,Zhang Qingye2,Wang Jiaju2,Liang Wenshuang2,Rosei Federico3,Xue Xuyan2ORCID,Wang Yiqian2ORCID

Affiliation:

1. Industrial Research Institute of Nonwovens & Technical Textiles Shandong Engineering Research Center for Specialty Nonwoven Materials College of Textile and Clothing Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China

2. College of Physics & State Key Laboratory Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China

3. Centre Énergie Matériaux et Télécommunications Institut National de la Recherche Scientifique 1650 Boulevard Lionel‐Boulet, Varennes Québec J3X 1P7 Canada

Abstract

All‐inorganic halide perovskites exhibit exceptional optical properties and are promising photoactive materials for optoelectronics. However, their stability remains a key challenge, exacerbated by a limited understanding of degradation mechanisms. Herein, in situ transmission electron microscopy (TEM) is used to investigate the effect of thickness on the structural stability of CsPbBr3 nanobricks under electron beam irradiation. CsPbBr3 nanobricks with different thicknesses have been prepared using a traditional hot‐injection method, giving rise to a distinctive cubic structure. A modulated structure, caused by bromine vacancy ordering, has been observed in the thin nanobricks. The degradation behaviors of nanobricks are related to thickness‐dependent bromine vacancy formation in the CsPbBr3 lattice. More bromine vacancies exist in thin nanobricks than thick ones, resulting in a greater number of undercoordinated Pb atoms which accelerate irradiation‐induced degradation. Decomposition products include Pb nanoparticles, which also demonstrate thickness‐dependent characteristics. TEM images of Pb nanoparticles formed from thin nanobricks show evidence of irradiation‐induced amorphization. In thicker nanobricks, Pb nanoparticle size increases with the duration of electron beam irradiation, while the remaining Cs atoms bond with Br atoms to form relatively stable CsBr nanoparticles. These results contribute to understanding of degradation mechanisms in cesium lead halide perovskites under electron beam irradiation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3