Photonic Synthesis and Coating of High‐Entropy Oxide on Layered Ni‐Rich Cathode Particles

Author:

Cui Yanyan1,Tang Yushu1,Lin Jing1,Wang Junbo1,Hahn Horst123ORCID,Breitung Ben1ORCID,Schweidler Simon1ORCID,Brezesinski Torsten1ORCID,Botros Miriam1ORCID

Affiliation:

1. Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Kaiserstr. 12 76131 Karlsruhe Germany

2. KIT‐TUD Joint Research Laboratory Nanomaterials Institute of Materials Science Technische Universität Darmstadt Alarich‐Weiss‐Str. 2 64287 Darmstadt Germany

3. School of Sustainable Chemical, Biological and Materials Engineering University of Oklahoma Norman OK 73019 USA

Abstract

High‐entropy materials have drawn much attention as battery materials due to their distinctive properties. Lithiated high‐entropy oxide (Li0.33(MgCoNiCuZn)0.67O, LiHEO) exhibits both high lithium‐ion and electronic conductivity, making it a potential coating material for layered Ni‐rich oxide cathodes (Li1+x(Ni1−yzCoyMnz)1−xO2, NCM or NMC) in conventional Li‐ion battery cells; however, high‐temperature synthesis limits its application. Therefore, a photonic curing strategy is used for synthesizing LiHEO and the non‐lithiated form (denoted as high‐entropy oxide [HEO]), and nanoscale coatings are successfully produced on LiNi0.85Co0.1Mn0.05O2 (NCM851005) particles. To one's knowledge, this is the first report on particle coating with high‐entropy materials using photonic curing. NCM851005 with LiHEO‐modified surface shows good cycling stability, with a capacity retention of 97% at 1 C rate after 200 cycles. The improvement in electrochemical performance is attributed to the conformal coating that prevents structural changes caused by the reaction between cathode material and liquid electrolyte. Compared to bare NCM851005, the coated material shows a significantly reduced tendency for intergranular cracking, successfully preventing electrolyte penetration and suppressing side reactions. Overall, photonic curing presents a novel cost‐ and energy‐efficient synthesis and coating procedure that paves the way for surface modification of any heat‐sensitive material for a wide range of applications.

Funder

Deutsche Forschungsgemeinschaft

China Scholarship Council

Horizon 2020 Framework Programme

Fonds der Chemischen Industrie

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3