Elevating Operation Voltage and Suppressing Phase Transition for Honeycomb‐Layered Cathodes by a Dual‐Honeycomb Structure Strategy

Author:

Ma Cui1,Abulikemu Aierxiding2,Li Xun‐Lu3,Zhang Ya4,Cheng Qian4,Fang Yao‐Guo4,Bao Jian1,Luo Rui‐Jie1,Du Chong‐Yu1,Zeng Jie1,Xu Xuan1,Sun Yuan‐He5,Gu Yue‐Liang5,Uchimoto Yoshiharu2ORCID,Zhou Yong‐Ning1ORCID

Affiliation:

1. Department of Materials Science Fudan University Shanghai 200438 China

2. Department of Interdisciplinary Environment Kyoto University Kyoto 606‐8501 Japan

3. Future Battery Research Center Global Institute of Future Technology Shanghai Jiao Tong University Shanghai 200240 China

4. Shanghai Xuanyi New Energy Development Co., Ltd Shanghai 201800 China

5. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

Abstract

Honeycomb‐layered oxides are a class of cathode materials for sodium‐ion batteries with great potential due to their high voltage and high capacity. However, the structural instability and voltage fading during cycling limit their practical application. Herein, it is revealed that Te substitution into Na3Ni2SbO6 induces a new dual‐honeycomb structure, which can elevate the average discharge voltage of the cathode materials from 3.2 to 3.8 V with improved cycle stability and alleviated voltage decay. Synchrotron operando X‐ray diffraction demonstrates that Te substitution can suppress the O3−P3−O1‐phase transition during charge and discharge processes effectively, benefited from the strong TeO covalent bonds. The resulted Na2.2Ni2Sb0.2Te0.8O6 cathode exhibits a high capacity retention of 70.9% after 1000 cycles at 1C, with an elevated operating voltage of ≈3.8 V. Theoretical calculations reveal that the introduced TeO bonds break the symmetric distribution of charge in Ni/Sb honeycomb structure and elevate the operation voltage by increased valence band width. Proper Te substitution can promote the rate and cycle capability of the cathode by suppressing phase transition and decreasing the bandgap.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3