Gas‐Separating Metal‐Organic Framework Membrane Films on Large‐Area 3D‐Printed Tubular Ceramic Scaffolds

Author:

Rana Surjakanta12ORCID,Sajzew Roman1ORCID,Smirnova Oksana1ORCID,Slowik Josef B.1,Komal Ayisha1,Velázquez José Joaquin2ORCID,Wyrwa Ralf3,Galusek Dušan2ORCID,Voigt Ingolf3,Wondraczek Lothar14ORCID,Knebel Alexander14ORCID

Affiliation:

1. Otto Schott Institute of Materials Research Friedrich Schiller University Jena Fraunhoferstraße 6 07743 Jena Germany

2. FunGlass Alexander Dubček University of Trenčín Študentská 2 SK‐911 50 Trenčín Slovakia

3. Fraunhofer Institute for Ceramic Technologies and Systems Michael‐Faraday‐Straße 1 07629 Hermsdorf Germany

4. Center for Energy and Environmental Chemistry Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany

Abstract

Polycrystalline metal‐organic framework (MOF) membrane films prepared on ceramic supports can separate gases with high energy efficiency. They generally exhibit very high permeance and selectivity but suffer from cost issues through the required ceramic supports. Increasing the area and reducing the ceramic component to a minimum can be a strategy to enabling neat membranes of MOFs. In a rapid prototyping approach using 3D‐printed porous scaffolds with a double‐helical channel geometry, an increased active membrane area‐to‐volume ratio is shown. Following stereolithographic printing and debinding of a ceramic slurry, an adapted sintering protocol is employed to sinter commercially available alumina slurries into porous scaffolds. The 3D‐printed scaffolds are optimized at a porosity of 40%, with satisfying mechanical stability. Furthermore, synthetic procedures yielding omnidirectional, homogeneous coatings on the outside and inside of the tubular scaffolds are developed. Membrane films of zeolitic imidazolate framework 8 and Hong Kong University of Science and Technology 1 covering a huge 50 cm2 membrane area are produced in this way by applying a counter‐diffusion methodology. Gas‐separation performance is evaluated for H2, CO2, N2, and CH4, in single‐gas measurements and on their binary‐gas mixtures.

Funder

Carl-Zeiss-Stiftung

Thüringer Aufbaubank

Horizon 2020 Framework Programme

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D printing of porous zirconia membranes by nanoparticle jetting;Journal of the European Ceramic Society;2024-11

2. Ti-substituted organosilica membranes for H2 sieving: Sol-gel and DFT insights;International Journal of Hydrogen Energy;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3