High‐Resolution Mapping Nanoscale Hydrophobicity for Fine Structures and Dynamic Evolution of Nanomaterial Surface

Author:

Zhang Yuyao123ORCID,Zhu Xiaoying1234,Zhu Bokai5,Chu Chiheng123,Chen Baoliang1234ORCID

Affiliation:

1. Faculty of Agriculture, Life, and Environmental Sciences Zhejiang University Hangzhou 310058 China

2. Department of Environmental Science Zhejiang University Hangzhou 310058 China

3. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control Hangzhou 310058 China

4. Innovation Center of Yangtze River Delta Zhejiang University Zhejiang 311400 China

5. Department of Microbiology and Immunology School of Medicine Stanford University Stanford CA 94305 USA

Abstract

Nanomaterial hydrophobicity plays a critical role in interfacial phenomena ranging from biological toxicity to chemical reactions. However, it is difficult to figure out the high‐resolution surface hydrophobicity at the nanoscale. Herein, a chemical force microscopy is demonstrated to profile in situ hydrophobicity images with the nanoscale resolution, exhibiting order‐of‐magnitude gain than the traditional methods. This method is utilized to rapidly recognize the spatial fine structure hydrophobicity on Au, graphite, mica, and graphene oxides (GO), enabling the recognition of complicated substances and structures. It is found that the hydrophobicity of GO is opaque and is independent of stacking thickness, which is entirely different from the original graphene. Especially, the regions of wrinkles/edges are first proved to be generally less attractive to the hydrophobic probe than flat areas. This method is used to observe the dynamic evolution of GO hydrophobicity in different aqueous conditions, and is capable of detecting local oxidation variation during interfacial reactions.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3