Key Roles of Initial Calcination Temperature in Accelerating the Performance in Proton Ceramic Fuel Cells via Regulating 3D Microstructure and Electronic Structure

Author:

Cui Jingzeng12,Zhang Yuxuan1,Liu Ze12,Hu Zhiwei3,Wang Han‐Ping4,Cho Po‐Yu4,Kuo Chang‐Yang45,Chin Yi‐Ying6,Chen Chien‐Te5,Zhu Jianqiu12,Zhou Jing1,Kim Guntae1ORCID,Wang Jian‐Qiang12ORCID,Zhang Linjuan12ORCID

Affiliation:

1. Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China

2. University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Max Planck Institute for Chemical Physics of Solids Nöthnitzer Strasse 40 01187 Dresden Germany

4. Department of Electrophysics National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan R. O. China

5. National Synchrotron Radiation Research Center Hsinchu Taiwan R. O. China

6. Department of Physics National Chung Cheng University Chiayi 62102 Taiwan R. O. China

Abstract

Developing cathode materials with high performance in oxygen reduction reaction (ORR) is desirable for proton ceramic fuel cells (PCFCs) for energy conversion technology. BaCo0.4Fe0.4Zr0.1Y0.1O3–δ (BCFZY) is widely investigated as a cathode. Herein, BCFZY cathode is used as a paradigmatic example to study the impact of calcination temperature on microstructure, electronic structure, and ORR performance. Ion beam‐scanning electron microscopy indicates BCFZY prepared at 800 °C (BCFZY800) exhibits the largest specific surface area and cathode/electrolyte contact area. BCFZY800 exhibits a peak power density of 1.32 W cm−2 at 650 °C, which is 37% and 193% higher than that of BCFZY prepared at 700 °C (BCFZY700) and 1100 °C (BCFZY1100), respectively. Furthermore, BCFZY800 demonstrates high long‐term stability over 500 h. Soft X‐Ray absorption spectra indicate that the oxidation state of BCFZY800 is reduced, suggesting more catalytically active sites than those of BCFZY700 and BCFZY1100 after the ORR. This work provides a new understanding for enhanced PCFCs performance by proper porosity structure via fine‐tuning the calcination temperature.

Funder

National Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3