Interface Polarization Effects Enhancing Mn2O3@TiO2@MXene Heterostructures for Aqueous Magnesium Ion Capacitors: Guided Charge Distribution and Transportation via Built‐in Electric Fields

Author:

Li Mudi1,Ding Yaxi1,Zhang Siwen1,Sun Ying1,Liu Minghui1,Zhao Jianwei2,Yin Bosi1,Ma Tianyi3ORCID

Affiliation:

1. Institute of Clean Energy Chemistry Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material College of Chemistry Liaoning University Shenyang 110036 P. R. China

2. Shenzhen HUASUAN Technology Co., Ltd. Shenzhen 518055 China

3. School of Science RMIT University Melbourne VIC 3000 Australia

Abstract

The electrochemical performances of aqueous magnesium ion energy storage devices rely on the transmission capacity of magnesium ions (Mg2+) at the electrode/electrolyte interface. However, the diffusion of Mg2+ is hindered by the strong electrostatic attraction of doubly charged magnesium cations. Herein, novel Mn2O3@TiO2@MXene three‐phase heterostructures with rich phase boundaries and synergistic effects is successfully designed. As expected, the mesoporous Mn2O3/TiO2@MXene can deliver a relatively high specific capacity of 241.5 mAh g−1 at 0.1 A g−1. Moreover, the energy density of the device using mesoporous Mn2O3@TiO2@MXene as cathode can reach 146.62 Wh kg−1. The unique construction of extensive interfaces between different phases creates a polarization effect. This polarization effect leads to intrinsic electric fields that guide charge distribution and promote fast migration of Mg2+ ions. Additionally, the in‐situ growth of TiO2 nanoparticles derived from MXene on Mn2O3 helps mitigate the volume expansion of host material, resulting in enhanced cycle stability. By strategically implementing the interface polarization effect and carefully engineering the heterostructure interfaces, we demonstrate a promising electrode synthesis approach with potential commercial viability and robust performance. This research aims to advance the field of materials science by exploring interface engineering and the multifunctional applications of MXene‐related materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3