Fast Ions Transportation in Nanochannel with ATPase‐Like Structure

Author:

Lu Bingxin1,Xiao Tianliang12,Zhang Caili1,He Jianwei1,Zhai Jin1ORCID

Affiliation:

1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100083 P. R. China

2. School of Energy and Power Engineering Beihang University Beijing 100191 P. R. China

Abstract

Ion transport plays an important role in various biological processes because of the ability of ions to move rapidly in biological ion channel‐confined spaces. For example, rapid proton transport in ATPases is attributed to confined channel spaces and conjugated sites. According to molecular dynamics simulations, the confined spaces and conjugated sites in nanochannels can enhance ion transport. Herein, it is demonstrated that the ATPase‐like structures of sulfonic acid‐modified covalent organic framework nanochannels, which promote the formation of highly ordered and continuous water molecular chains and confined spaces, can support ion (H+, Li+, Na+, and K+) transport rates that are an order of magnitude higher than those of bulk water. The ion transport rates in the nanochannel are superior to those in other artificial channels. Moreover, the selectivity of cations in the nanochannel is evaluated using the diffusion potential with a concentration gradient. The simulations and experimental results demonstrate that confined spaces and conjugated sites are crucial for efficient ion transport in nanochannels modified by sulfonic acid groups as cation conductor materials.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3