Neutron Reflectometry Study of Solid Electrolyte Interphase Formation in Highly Concentrated Electrolytes

Author:

Rizell Josef1,Zubayer Anton2,Sadd Matthew1,Lundin Filippa1,Mozhzhukhina Nataliia1,Eriksson Fredrik2,Birch Jens2,Vorobiev Alexei34,Xiong Shizhao1ORCID,Matic Aleksandar1

Affiliation:

1. Department of Physics Chalmers University of Technology 41296 Göteborg Sweden

2. The Department of Physics, Chemistry and Biology Linköping University 58183 Linköping Sweden

3. Department of Physics and Astronomy Uppsala University 75120 Uppsala Sweden

4. Institute Laue-Langevin 38042 Grenoble (Cedex 9) France

Abstract

Highly concentrated electrolytes have been found to improve the cycle life and Coulombic efficiency of lithium metal anodes, as well as to suppress dendrite growth. However, the mechanism for these improvements is not well understood. Partly, this can be linked to the difficulty of accurately characterizing the solid electrolyte interphase (SEI), known to play an important role for anode stability and stripping/plating efficiency. Herein, in situ neutron reflectometry is used to obtain information about SEI formation in a highly concentrated ether‐based electrolyte. With neutron reflectometry, the thickness, scattering length density (SLD), and roughness of the SEI layer formed on a Cu working electrode are nondestructively probed. The reflectivity data point to the formation of a thin (5 nm) SEI in the highly concentrated electrolyte (salt:solvent ratio 1:2.2), while a considerably thicker (13 nm) SEI is formed in an electrolyte at lower salt concentration (salt:solvent ratio 1:13.7). Further, the SEI formed in the electrolyte with high salt concentration has a higher SLD, suggesting that the chemical composition of the SEI changes. The results from neutron reflectometry correlate well with the electrochemical data from SEI formation.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3