Biomimetic Design of 3D Fibrous Mesh Reinforced Hydrogel Replicating the Form and Function of the Intervertebral Disc

Author:

Lu Changbo1,Huang Xinyi1,Yan Hao2,Wang Ya3,Wang Yibo3,Zhuo Shuyun2,Wei Congying2,Qiu Haiyang1,Yang Xiaojiang1,Zhang Yang1ORCID,Liu Mingjie2,Lei Wei1

Affiliation:

1. Departments of Orthopaedic Surgery Xijing Hospital Air Force Medical University Xi'an Shaanxi 710032 China

2. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 China

3. School of Aeronautic Science and Engineering Beihang University Beijing 100089 China

Abstract

While cervical total artificial disc replacement potentially preserves motion of the natural intervertebral disc (IVD), problems also arise involving alterations of the spinal biomechanics. A major challenge lies in restoring mechanics of the natural IVD with appropriate kinematics and biomimetic configuration. A biomimetic artificial IVD model is designed and fabricated using a 3D braided fibrous scaffold and a self‐healable hydrogel matrix. The artificial IVD is characterized by 3D four‐directional fibrous structure resembling natural annulus fibrosus and self‐healable hydrogel‐mimicking natural nucleus pulposus. In the compression tests, the artificial IVD exhibits reasonable mechanical behaviors and desired viscoelastic behaviors similar to the natural IVD. After fatigue loading of 5 million cycles, the artificial IVDs become stiffer, whereas the mechanical values remain within the reasonable range. Finite‐element analysis of the artificial IVD from mesoscale and macroscale analysis indicates the coherent load transfer through both the interconnections within the fiber mesh and the fiber–matrix interface, and the entire IVD shows a stress profilometry similar to natural IVD. In conclusion, a biomimetic prototype of artificial IVD with nature‐mimicking mechanics and structure is fabricated. The presence of interwoven fibrous mesh, hydrogel confinement, and proper interfacial adhesion is all essential for scalable production of the IVD.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3