Metal–Organic Framework‐Derived MnO Nanocrystals Embedded in a Spindle Carbon for Rechargeable Aqueous Zinc Battery with a Molten Hydrate Electrolyte

Author:

Liu Hongwen12,Chen Chih-Yao2,Jiang Jialong1,Zhang Runhao1,Zou Lianli2,Wei Yong-Sheng2,Cheng Peng13,Xu Qiang24ORCID,Shi Wei1

Affiliation:

1. Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China

2. AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan

3. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

4. Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM) SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL) Department of Chemistry Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China

Abstract

Rechargeable aqueous zinc batteries (RAZBs) are emerging candidates for large‐scale energy storage. However, the lack of high‐capacity cathodes because of the electrostatic interactions between Zn2+ and cathode and the inferior electronic conductivity restricts their performance. The operating voltage limitation imposed by water is another barrier for RAZBs. Herein, manganese oxide (MnO) nanocrystals embedded in a spindle carbon matrix (MnO@C) synthesized from a metal–organic framework are used as a cathode. The uniform distribution of fine‐sized MnO (≈100 nm) in the carbonized matrix (≈5 μm) and the intimate connection between them not only increase the utilization of electroactive material but also eliminate the use of conductive additive. By utilizing the molten hydrate electrolyte, ZnCl2·2.33H2O, a discharge voltage plateau approaching 1.60 V and a high reversible capacity of 106 mAh g−1 after 200 cycles are achieved. This research proposes an approach for affordable RAZBs to fulfill large‐scale energy storage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Ministry of Education of the People's Republic of China

China Scholarship Council

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3