Affiliation:
1. State Key Laboratory of Urban Water Resource and Environment Shenzhen Key Laboratory of Organic Pollution Prevention and Control School of Civil and Environmental Engineering Harbin Institute of Technology Shenzhen Shenzhen 518055 P. R. China
2. Department of Materials Science and Engineering State Key Laboratory of Marine Pollution City University of Hong Kong Kowloon Hong Kong China
3. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
4. Advanced Institute for Materials Research (WPI-AIMR) Tohoku University Sendai 980-8577 Japan
Abstract
The design and synthesis of efficient adsorbents for the recovery of precious metals from secondary resources are of great environmental and economic significance. Herein, a magnetic sulfur‐doped composite CoFe2O4@S–CoWO4 (CF@S–CoWO4) is developed through a hydrothermal synthesis method, which is used to selectively recover gold in aqueous media. Significantly, CF@S–CoWO4 exhibits the best overall performance with gold ions adsorption capacity (Qmax) and distribution coefficient (Kd) are 1049 mg g−1 and 4.4 × 106 mL g−1, respectively, which are much higher than those of other gold adsorption materials. The selectivity coefficients (K) toward other metal ions (Pd2+, Ca2+, Mg2+, Cd2+, Al3+, Li+, Ni+) are also higher, which suggests that CF@S–CoWO4 had a preferential selectivity for Au3+ in coexisting ion solutions. Moreover, the antianion interference of the composite follows the order: SO42− > PO43− > NO3− > CO32−, and it also shows very good reusability with adsorption efficiency at 81.78% after four repeated cycles. Based on characterizations and calculation, it is found that Au(III) mainly undergoes chelation and reduction reactions in the S sites in CF@S–CoWO4, which indicates the important role of S sites. Hence the CF@S–CoWO4 composite demonstrates a promising application for the recycling of gold ions from electronic wastewater.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献