Lattice Strain and Surface Activity of Dislocation‐Distorted AgPd Nanoalloys Under Preoxidation and Catalysis Condition

Author:

Wang Junpeng12,Li Ke12,Guo Longfei12,Pan Bowei12,Jin Tao12,Li Zhen12,Tang Quan12,Chen Fuyi12ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xian 710072 China

2. School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 China

Abstract

Although line defects endow excellent catalytic performance by undercoordinated sites with compressive tensile strain, few studies have systematically unraveled the relationship between dislocation, strain, and electrochemical activity for formate oxidation reactions (FOR). Herein, a novel approach for synthesizing defect‐rich nanomaterials at room temperature is proposed for the first time. The heated and dealloyed AgPd nanoparticles (hd‐AgPd NPs) substantially improve the intrinsic electrocatalytic activity by introducing compressive strain to tune its electronic structure. Electrochemical experiments show that the mass activity of hd‐AgPd NPs for FOR is 5.3 times higher than that of pure Pd nanoparticle catalysts. Following a 3600 s chronoamperometric process, a portion of the dislocation vanishes, but the strain persists on the AgPd (111) facet. The mechanisms for activity enhancement are further explored through density functional theory and molecular dynamics calculations, which show that compressive strain effectively alters its electronic structure and decreases the energy of the rate‐determining step during the reaction, significantly enhancing the FOR performance and stability. The results of electrochemical performance and physical characterization show that lattice strain has a more significant impact on FOR performance than alloying and preoxidation. This study presents a new approach to produce high‐performance catalysts by inducing strain into nanoparticles.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3