Affiliation:
1. Department of Chemistry (BK21 FOUR) Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
2. Core-Facility Center for Photochemistry & Nanomaterials Gyeongsang National University Jinju 52828 Republic of Korea
Abstract
Electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the anodic oxygen evolution reaction (OER) in water electrolysis. However, UOR faces challenges like slow kinetics, high energy barriers, and a complex mechanism, necessitating the development of efficient electrocatalysts. Herein, a rapid method is proposed for synthesizing Mo‐doped Ni/NiO (Ni/MNO) nanocomposite as a highly effective UOR electrocatalyst. Mo doping oxidizes Ni2+ to Ni3+, creating abundant active sites for UOR. The Ni/MNO catalyst exhibits remarkable activity for both OER and UOR due to Mo doping, structural modulation, increased active sites, and the presence of Ni3+ ions. Optimized Ni/MNO‐10 shows a low OER overpotential of 280 mV and a UOR working potential of 1.37 V versus reversible hydrogen electrode at 10 mA cm−2, with exceptional stability over 12 h of continuous electrolysis. Notably, urea‐assisted water splitting requires only 1.45 V for 10 mA cm−2, significantly less than the overall water splitting voltage (1.65 V), indicating energy‐efficient hydrogen production. Moreover, the Ni/MNO catalyst exhibits outstanding long‐term stability. This work presents a rapid and effective approach to synthesizing cost‐effective and efficient electrocatalysts for clean energy production and wastewater treatment.
Funder
Korea Basic Science Institute
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献