Progress and Perspectives on Lithium Metal Powder for Rechargeable Batteries

Author:

Dzakpasu Cyril Bubu12ORCID,Kang Dongyoon1,Kim Dongyoung1,Song Myunggeun3,Jin Dahee1,Ryou Sun‐Yul4,Lee Yong Min12ORCID

Affiliation:

1. Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea

2. Energy Science and Engineering Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea

3. Department of Chemistry and Bio‐Science Kumoh National Institute of Technology Gyeongbuk 39177 Republic of Korea

4. Department of Chemical and Biological Engineering Hanbat National University Daejeon 34158 Republic of Korea

Abstract

The increasing demand for batteries with high‐energy densities for applications such as electric vehicles necessitates a paradigm shift from the use of conventional graphite as anodes. Li metal is spotlighted as a replacement for graphite due to its ultrahigh theoretical capacity (3860 mAh g−1). However, Li metal foil is plagued with limited cycle life and safety concerns due to poor Coulombic efficiency and uncontrollable growth of Li dendrites. To overcome these challenges, utilizing Li metal in powder form instead of the conventional foil proves to be advantageous. The anode consisting of spherical‐shaped Li metal powders (LMPs) has a larger surface area than Li metal foil, resulting in a lower effective current density. Furthermore, using the powder‐based slurry process facilitates the fabrication of large‐area and thin‐film (≤20 μm) Li anodes. In this review, the various fabrication methods and surface stabilization techniques of LMPs are summarized with their associated patents. Also, research trends with regard to LMP‐based anodes toward high‐performance Li metal batteries (LMBs) are carefully presented. Additionally, the application of LMPs as prelithiation agents in electrode active materials for batteries and capacitors is outlined. Finally, perspectives are suggested regarding the future of LMPs to accelerate the commercialization of advanced LMBs.

Funder

National Research Foundation of Korea

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3