The 3D Flower–Like MnV12O31·10H2O as a High‐Capacity and Long‐Lifespan Cathode Material for Aqueous Zinc‐Ion Batteries

Author:

Ran Yan12,Ren Jie1,Yang Zhi Chao1,Zhao Huaping2,Wang Yude3,Lei Yong2ORCID

Affiliation:

1. School of Materials and Energy Yunnan University 650091 Kunming China

2. Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano Technische Universität Ilmenau 98693 Ilmenau Germany

3. Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies Yunnan University 650091 Kunming China

Abstract

Selecting the right cathode material is a key component to achieving high‐energy and long‐lifespan aqueous zinc‐ion batteries (AZIBs); however, the development of cathode materials still faces serious challenges due to the high polarization of Zn2+. In this work, MnV12O31·10H2O (MnVO) synthesized via a one‐step hydrothermal method is proposed as a promising cathode material for AZIBs. Because the stable layered structure and hieratical morphology of MnVO provide a large layer space for rapid ion transports, this material exhibits high specific capacity (433 mAh g−1 at 0.1 A g−1), an outstanding long‐term cyclability (5000 cycles at a current density of 3 A g−1), and an excellent energy density (454.65 Wh kg−1). To illustrate the intercalation mechanism, ex situ X‐Ray diffraction, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy are adopted, uncovering an H+/Zn2+ dual‐cation co‐intercalation processes. In addition, density‐functional theory calculation analysis shows that MnVO has a delocalized electron cloud and the diffusion energy barrier of Zn2+ in MnVO is low, which promotes the Zn2+ transport and consequently improves the reversibility of the battery upon deep cycling. The key and enlightening insights are provided in the results for designing high‐performance vanadium‐oxide‐based cathode materials for AZIBs.

Funder

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Chinesisch-Deutsche Zentrum für Wissenschaftsförderung

China Scholarship Council

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3