Na–K Co‐deposition in Liquid‐Alloy Batteries Revealed by Operando Visualization

Author:

Cheng Yong1,Lin Chenxue1,Luo Chong1,Liu Weicheng1,Wang Ming-Sheng12ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Materials Xiamen University Xiamen 361005 China

2. Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials Xiamen Key Laboratory of High Performance Metals and Materials Xiamen University Xiamen 361005 China

Abstract

Despite the great prospects of alkali metal batteries, safety concerns associated with dendrite growth still limit their commercial applications. An attractive alternative is to use the room temperature liquid sodium–potassium alloy as the anode, which inherently prevents dendrite growth. Currently, Na–K alloy anodes allow only Na+ or K+ to be cycled, depending on the choice of electrolyte and ion selectivity of the cathode, which results in reduced energy density of the battery. Herein, the possibility of concurrent use of both Na+ and K+ ions in Na–K alloy anodes is explored, and the working mechanism by operando optical microscopy is investigated. It is found that the type of deposited metal is dictated by both salt and solvent in electrolyte. Impressively, Na–K co‐deposition is observed in KFSI‐DME electrolyte for the first time, which strongly influences the dendrite morphology and evolution. Furthermore, the current density also has a great impact on the deposition pattern, which allows dendrite‐free Na/K deposition on the liquid‐alloy anode. These findings enrich our understanding of the intricate electrochemical behaviors of Na–K binary electroactive alloy systems and offer guidance for the sufficient use of Na and K while avoiding dendrite formation in such liquid‐alloy batteries.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3