Tailoring Mechanical Properties and Shear Band Propagation in ZrCu Metallic Glass Nanolaminates Through Chemical Heterogeneities and Interface Density

Author:

Brognara Andrea1ORCID,Kashiwar Ankush23,Jung Chanwon1ORCID,Zhang Xukai1,Ahmadian Ali14ORCID,Gauquelin Nicolas3ORCID,Verbeeck Johan3ORCID,Djemia Philippe5ORCID,Faurie Damien5ORCID,Dehm Gerhard1ORCID,Idrissi Hosni23ORCID,Best James Paul1ORCID,Ghidelli Matteo15ORCID

Affiliation:

1. Max‐Planck‐Institut für Eisenforschung GmbH Max‐Planck‐Str. 1 40237 Düsseldorf Germany

2. Institute of Mechanics, Materials and Civil Engineering (iMMC) IMAP Université catholique de Louvain B‐1348 Louvain‐la‐Neuve Belgium

3. Department of Physics, Electron Microscopy for Materials Science (EMAT) University of Antwerp B‐2020 Antwerpen Belgium

4. Institute of Nanotechnology Karlsruhe Institute of Technology 76344 Eggenstein‐Leopoldshafen Germany

5. Laboratoire des Sciences des Procédés et des Matériaux (LSPM) CNRS Université Sorbonne Paris Nord 93430 Villetaneuse France

Abstract

The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr24Cu76/Zr61Cu39, fully amorphous nanocomposite with controlled nanoscale periodicity (Λ, from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.

Funder

Agence Nationale de la Recherche

Deutscher Akademischer Austauschdienst

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3