Precise Lattice‐Strain Modulation of Hematite Enabled by Gradient Doping of Mn for Enhanced Photoelectrocatalytic Oxidative C─C Bond Scission

Author:

Li Lanyun1,Wu Pei‐dong12,Li Wenliu1,Huang Jinshu1,Li Hu1ORCID,Yang Song1

Affiliation:

1. National Key Laboratory of Green Pesticide Key Laboratory Green Pesticide & Agricultural Bioengineering Ministry of Education State Local Joint Engineering Lab for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang Guizhou 550025 China

2. Biomass Group College of Engineering Nanjing Agricultural University 40 Dianjiangtai Road Nanjing Jiangsu 210031 China

Abstract

The high‐value utilization of biomass feedstock is fascinating but limited by efficient C─H activation to break C─C bonds. Herein, F‐Fe2O3‐Mn photoanodes with modulable compressive strain are fabricated by gradient infusion of Mn into F‐doped hematite (F‐Fe2O3), which is illustrated to be highly efficient for oxidative C─C bond cleavage of various bio‐based 1,2‐diols to produce benzoic acids or aromatic ketones (94.5–97.2% yields) in photoelectrocatalytic (PEC) device, coupling with a high H2 production of 1180 μmol cm−2 (≈96% yield). The gradient doping of Mn species into the photoelectrode bulk results in improved photoexcited carriers separation and transfer efficiency of the photoelectrode (3.41 mA cm−2). On the other hand, the lattice distortion induced by Mn doping also leads to a strain effect on F─Fe2O3─Mn, which can precisely modulate the photoelectrode electronic structure. Control experiments, in situ characterization, and theoretical calculations elaborate that compressive strain is capable of adjusting the position of the d‐band center to facilitate C─H activation, remarkably enabling PEC oxidative C─C bond breaking of 1,2‐diol and the desorption of the oxidized product. This “one‐stone‐two‐bird” strategy presents a straightforward protocol for efficiently breaking C─C bonds in organic and biomass transformations via PEC oxidation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3