Anisotropic, Strong, and Thermally Insulating 3D‐Printed Nanocellulose–PNIPAAM Aerogels

Author:

Nagel Yannick1,Sivaraman Deeptanshu2,Neels Antonia3,Zimmermann Tanja1,Zhao Shanyu2,Siqueira Gilberto14,Nyström Gustav15ORCID

Affiliation:

1. Cellulose & Wood Materials Laboratory Empa – Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland

2. Laboratory for Building Energy Materials and Components Swiss Federal Laboratories for Materials Science and Technology Empa 8600 Dübendorf Switzerland

3. Center for X-Ray Analytics Swiss Federal Laboratories for Materials Science and Technology Empa 8600 Dübendorf Switzerland

4. Complex Materials Department of Materials ETH Zürich 8093 Zürich Switzerland

5. Department of Health Science and Technology ETH Zürich 8092 Zürich Switzerland

Abstract

Cellulose is a promising candidate for the fabrication of superinsulating materials, which would be of great interest for thermal management applications as well as for the scientific community. Until now, the production of strong cellulose‐based aerogels has been dominated by traditional manufacturing processes, which have limited the possibilities to achieve the structural control and mechanical properties seen in natural materials such as wood. In this work, we show a simple but versatile method to fabricate cellulose aerogels in intricate geometries. We take advantage of the 3D printing technique direct ink writing to control both the shape and the thermal‐mechanical properties of the printed cellulose‐based hydrogel inks. Moreover, the shear forces involved in the extrusion process allow us to impart an anisotropic nanostructure to the printed samples. By solvent exchange and supercritical drying, the hydrogel parts are then transformed into stable aerogels. Using X‐ray diffraction analysis, mechanical tests and thermal conductivity tests, our 3D printed aerogels are shown to exhibit directionally dependent thermal‐mechanical properties higher than those reported for earlier cellulose‐based aerogels. These characteristics enable us to fabricate customized structures that can be precisely tailored for their application as load‐bearing insulating materials for thermal management.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3