Tenfold Enhancement of Wear Resistance by Electrosynthesis of a Nanostructured Self‐Lubricating Al2O3/Sn(S)MoS2 Composite Film on AlSiCu Casting Alloys

Author:

Liu Jiacheng1ORCID,Kure‐Chu Song‐Zhu1ORCID,Katsuta Shuji1,Zhang Mengmeng2,Fang Shaoli2,Matsubara Takashi1,Sakurai Yoko1,Hihara Takehiko1,Baughman Ray H.2ORCID,Yashiro Hitoshi3,Pan Long4,Zhang Wei4,Sun Zheng Ming4

Affiliation:

1. Department of Materials Function and Design Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan

2. NanoTech Institute University of Texas at Dallas 800 West Campbell Road Richardson TX 75080 USA

3. Department of Chemistry and Bioengineering Iwate University Ueta‐4‐3‐5 Morioka Iwate 020‐8551 Japan

4. Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering Southeast University Nanjing 211189 P. R. China

Abstract

Enhancing tribological performance through nanostructure control is crucial for saving energy and improving wear resistance for diverse applications. We introduce a new electrochemical approach that integrates aluminum (Al) anodization, tin alternating current (AC) electrodeposition, and anodic MoS2 electrosynthesis for fabricating nanostructured Al2O3/Sn(S)MoS2 composite films on AlSiCu casting alloys. Our unique process uses Sn‐modified MoS2 deposition to form robust solid lubricant MoS2–SnS electrodeposits within the nanochannels and microsized voids/defects of anodic alumina matrix films on the base materials, resulting in a bilayered Al2O3/SnSMoS2 and MoS2–SnS–Sn composite film. The AC‐deposited Sn enhances conductivity in the anodic alumina matrix film, acts as catalytic nuclei for Sn@SnS@MoS2 core‐shell nanoparticles and a dense top layer, and serves as a reductant for the direct synthesis of hybrid solid lubricant MoS2–SnS from MoS3 by anodic electrolysis of MoS42− ions. The resulting nanocomposite film provides a two‐fold increase in lubricity (friction coefficient (COF) μ = 0.14 ⇒ 0.07) and a ten‐fold improvement in wear resistance (COF μ < 0.2) compared to conventional Al2O3/MoS2 film formed by anodizing and reanodizing. The effectiveness of the Al2O3/Sn(S)MoS2 composite is further validated through real automotive engine piston tests.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3