A novel epoxy resin system containing bismaleimide and DOPO‐based flame retardant with excellent flame retardancy and toughness

Author:

Liu Zhengbiao1,Zhang Yijun1,Jia Zhiwei1,Liu Hua2,Liu Zuozhen123ORCID

Affiliation:

1. School of Materials Science and Engineering East China University of Science and Technology Shanghai China

2. Department of Research and Development Sino Polymer Co., Ltd of East China University of Science and Technology Shanghai China

3. Chairman of the Board Shanghai Huayi Resin Co., Ltd Shanghai China

Abstract

Abstract9,10‐dihydro‐9‐oxo‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and special tetra functional epoxy resin (EP) AG‐601 were combined to synthesize a reactive flame retardant (FREP) and then incorporated into EP, obtaining the flame retardant material EP/FREP. To achieve EPs with higher flame retardancy and mechanical properties, a new intrinsically flame retardant EP system named EP/FRDM was produced by modifying EP/FREP with high thermal resistance bismaleimide (BDM). In the presence of a distinct FRDM structure comprising phosphaphenanthrene/nitrogen, the EP possessed superior flame retardancy and impact toughness. The curing process of EP/FRDM was investigated using Real‐Time Fourier‐transform Infrared. In terms of fire performance, the limiting oxygen index of the EP/FRDM‐3 was raised from 31.4% to 38.2%, and the vertical burning rating was improved after BDM was added to the EP/FREP system. It was discovered that EP/FRDM exhibited a classic two‐phase flame retardant influence by analyzing the residual carbon morphology and pyrolysis behavior. Simultaneously, the glass transition temperature (Tg) of EP/FRDM remained essentially stable, and the char residue yield rose markedly, which indicated that the system had outstanding thermal stability, according to the results of the dynamic mechanical analysis and thermogravimetric analysis tests. Notably, the EP/FRDM experienced an internal chain expansion reaction when BDM was added, giving flame retardant materials excellent flexural and impact strengths and promising future application opportunities.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3