Effect of temperature and moisture composite environments on the mechanical properties and mechanisms of woven carbon fiber composites

Author:

Chen Jingsong1ORCID,Yang Guangwu1ORCID,Xiao Shoune1,Chen Dongdong1ORCID,Wang Mingmeng1,Jiang Lanxin2

Affiliation:

1. State Key Laboratory of Rail Transit Vehicle System Southwest Jiaotong University Chengdu China

2. School of Mechanical Engineering Sichuan University Chengdu China

Abstract

AbstractTemperature and moisture are important environmental conditions governing the usage of carbon fiber‐reinforced plastics (CFRP). In this study, tensile, compression, and shear tests of woven CFRP composites were conducted in four composite environments: cold‐temperature dry state, room‐temperature dry state, elevated‐temperature dry state, and elevated‐temperature wet state. Fourier transform infrared (FTIR) spectroscopy was used to analyze the molecular composition and structure under these environments. The fracture morphology was also analyzed using scanning electron microscopy (SEM) to understand the deterioration mechanism of the material properties at the macro and micro scales. Finally, a two‐parameter Weibull statistical model was used to evaluate the scattering of the composites. The results demonstrate that the tensile, compressive, and shear properties of the material decrease under harsh conditions, and the degradation effect on the ultimate strength is much greater than that of the modulus. Cold‐temperature dry and elevated‐temperature wet conditions are particularly severe. Composite environments significantly affect the macroscopic failure process and ultimate failure mode of materials. In general, the temperature and humidity of the matrix system acts at the core of the deterioration mechanism of composites, affecting the properties of the fiber/matrix and orthogonal woven fiber interfaces, and eventually resulting in a loss of their constitutive strength and bearing capacity. The theoretical ultimate strength were consistent with the experimental values.Highlights Comprehensive mechanical property testing in multiple composite environments. Degradation mechanisms were revealed from multiscale morphology analysis. Scattering of composites were evaluated using statistical analyses. Cold temperature dry and elevated temperature wet were the worst states. Deterioration effect of environment on matrix and interface is the core failure mechanism.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3