Affiliation:
1. School of Science Western Sydney University Penrith New South Wales Australia
2. Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health Translational Research Institute, Queensland University of Technology Brisbane Queensland Australia
3. School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
4. Sydney Mass Spectrometry University of Sydney Sydney New South Wales Australia
Abstract
AbstractThe repair of double‐strand DNA breaks (DSBs) by homologous recombination is crucial in the maintenance of genome integrity. While the key role of the Mre11‐Rad50‐Nbs1 (MRN) complex in repair is well known, hSSB1 (SOSSB and OBFC2B), one of the main components of the sensor of single‐stranded DNA (SOSS) protein complex, has also been shown to rapidly localize to DSB breaks and promote repair. We have previously demonstrated that hSSB1 binds directly to Nbs1, a component of the MRN complex, in a DNA damage‐independent manner. However, recruitment of the MRN complex has also been demonstrated by an interaction between Integrator Complex Subunit 3 (INTS3; also known as SOSSA), another member of the SOSS complex, and Nbs1. In this study, we utilize a combined approach of in silico, biochemical, and functional experiments to uncover the molecular details of INTS3 binding to Nbs1. We demonstrate that the forkhead‐associated domain of Nbs1 interacts with INTS3 via phosphorylation‐dependent binding to INTS3 at Threonine 592, with contributions from Serine 590. Based on these data, we propose a model of MRN recruitment to a DSB via INTS3.
Funder
Western Sydney University
Subject
Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献