Affiliation:
1. Department of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Gadjah Mada Yogyakarta Indonesia
Abstract
ABSTRACTThis work describes a molecular dynamics simulation study (MP2‐DKH2/MM) that explores the structural and dynamical properties of hydrated Ac3+ ions in an aqueous solution. Simulation results indicate that the ion formed three hydration shells. The hydrated Ac3+ had a first hydration shell comprising 8–9 water molecules. It showed similar probabilities for both coordination numbers, showing a flexible first hydration shell with eight registered successful ligand exchanges during the simulation. The water molecules' mean residence times (MRT) in the first, second, and third hydration shells were 131.8, 6.46, and 2.67 ps, respectively. The complexes of octahydrate ([Ac(H₂O)₈]3+) and nonahydrate ([Ac(H₂O)₉]3+) were observed in the first hydration shell. The square antiprism (SA) geometry was adopted for octahydrate, while the gyroelongated square antiprism (GySA) geometry was adopted for nonahydrate. The simulations provided valuable insights into the ion‐oxygen stretching frequencies. Specifically, the average stretching frequency for Ac3+ was found to be 404 cm−1, which is in good agreement with the calculated value from the CCSD(T) calculation of 398.78 cm−1. These findings indicate that including DKH2 relativistic approximation increases the accuracy of the simulation results and can contribute to understanding these actinide ions' behavior in aqueous environments, shedding light on hydrated systems' structural arrangements and dynamics.