Thermomagnetic Models for the Improved Rosen–Morse Oscillator

Author:

Ahmed A. D.1ORCID,Eyube E. S.1ORCID,Najoji S. D.2ORCID,Tanko P. U.3ORCID,Onate C. A.4ORCID,Omugbe E.5ORCID,Mohammed B. D.6ORCID,Makasson C. R.6ORCID,Mshelia E. H.7ORCID

Affiliation:

1. Department of Physics, Faculty of Physical Sciences Modibbo Adama University Yola Adamawa State Nigeria

2. Department of Science Laboratory Technology, School of Science and Technology The Federal Polytechnic Damaturu Yobe State Nigeria

3. Department of Physics Education Federal College of Education (Technical) Gombe Gombe State Nigeria

4. Physics Program, College of Agriculture, Engineering and Science Bowen University Iwo Iwo Osun State Nigeria

5. Department of Physics University of Agriculture and Environmental Sciences Umuagwo Imo State Nigeria

6. Department of Science Laboratory Technology School of Science and Technology, Adamawa State Polytechnic Yola Adamawa State Nigeria

7. Department of Chemistry, Faculty of Natural and Applied Sciences Nigerian Army University Biu Borno State Nigeria

Abstract

ABSTRACTThis study solves the radial Schrödinger wave equation (RSWE) with the improved Rosen–Morse (IRM) potential constrained by an electromagnetic field. Energy eigenvalues are derived using the parametric Nikiforov–Uvarov method and Pekeris approximation. The internal partition function, isobaric molar heat capacity formula, and magnetization model are then deduced from the equation governing pure vibrational energy states. These analytical models are applied to several pure substances, specifically Br2 (X 1Σg+), BrF (X 1Σ+), ICl (X 1Σg+), and P2 (X 1Σg+) molecules. Numerical approximations of the energy eigenvalues for these molecules closely match their exact values. The isobaric molar heat capacity expression yields mean percentage absolute deviations of 1.6585%, 0.9162%, 1.2193%, and 0.7232% when compared against experimental data for Br2 (X 1Σg+), BrF (X 1Σ+), ICl (X 1Σg+), and P2 (X 1Σg+), respectively. These results align well with other heat capacity models in existing literature.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3