Affiliation:
1. School of Mathematics Jilin University Changchun China
2. School of Economics and Statistics Guangzhou University Guangzhou China
3. Department of Statistics University of Missouri Columbia Missouri USA
4. Department of Epidemiology and Biostatistics, School of Public Health Medical College of Soochow University Suzhou China
Abstract
Length‐biased data occur often in many scientific fields, including clinical trials, epidemiology surveys and genome‐wide association studies, and many methods have been proposed for their analysis under various situations. In this article, we consider the situation where one faces length‐biased and partly interval‐censored failure time data under the proportional hazards model, for which it does not seem to exist an established method. For the estimation, we propose an efficient nonparametric maximum likelihood method by incorporating the distribution information of the observed truncation times. For the implementation of the method, a flexible and stable EM algorithm via two‐stage data augmentation is developed. By employing the empirical process theory, we establish the asymptotic properties of the resulting estimators. A simulation study conducted to assess the finite‐sample performance of the proposed method suggests that it works well and is more efficient than the conditional likelihood approach. An application to an AIDS cohort study is also provided.
Funder
National Natural Science Foundation of China
Subject
Statistics and Probability,Epidemiology