A real‐time flood forecasting hybrid machine learning hydrological model for Krong H'nang hydropower reservoir

Author:

Nguyen Phuoc Sinh12ORCID,Nguyen Truong Huy (Felix)3,Nguyen The Hung1

Affiliation:

1. Faculty of Water Resources Engineering University of Science and Technology—The University of Da Nang Da Nang Vietnam

2. Song Ba JSC 573 Nui Thanh, Hai Chau Da Nang Vietnam

3. AtkinsRéalis Montreal Quebec Canada

Abstract

AbstractFlood forecasting is critical for mitigating flood damage and ensuring a safe operation of hydroelectric power plants and reservoirs. This paper presents a new hybrid hydrological model based on the combination of the Hydrologic Engineering Center‐Hydrologic Modeling System (HEC‐HMS) hydrological model and an Encoder‐Decoder‐Long Short‐Term Memory network to enhance the accuracy of real‐time flood forecasting. The proposed hybrid model has been applied to the Krong H'nang hydropower reservoir. The observed data from 33 floods monitored between 2016 and 2021 are used to calibrate, validate, and test the hybrid model. Results show that the HEC‐HMS‐artificial neural network hybrid model significantly improves the forecast quality, especially for results at a longer forecasting time. In detail, the Kling–Gupta efficiency (KGE) index, for example, increased from ∆KGE = 16% at time t + 1 h to ∆KGE = 69% at time t + 6 h. Similar results were obtained for other indicators including peak error and volume error. The computer program developed for this study is being used in practice at the Krong H'nang hydropower to aid in reservoir planning, flood control, and water resource efficiency.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3