MicroRNA-302 Increases Reprogramming Efficiency via Repression of NR2F2

Author:

Hu Shijun123,Wilson Kitchener D.4,Ghosh Zhumur5,Han Leng123,Wang Yongming123,Lan Feng123,Ransohoff Katherine J.12,Burridge Paul123,Wu Joseph C.123

Affiliation:

1. Department of Medicine, Division of Cardiology, Stanford, California, USA

2. Cardiovascular Institute, Stanford, California, USA

3. Institute of Stem Cell Biology and Regenerative Medicine, Stanford, California, USA

4. Department of Pathology, Stanford University, Stanford, California, USA

5. Bioinformatics Center, Bose Institute, Kolkata, India

Abstract

Abstract MicroRNAs (miRNAs) have emerged as critical regulators of gene expression through translational inhibition and RNA decay and have been implicated in the regulation of cellular differentiation, proliferation, angiogenesis, and apoptosis. In this study, we analyzed global miRNA and mRNA microarrays to predict novel miRNA-mRNA interactions in human embryonic stem cells and induced pluripotent stem cells (iPSCs). In particular, we demonstrate a regulatory feedback loop between the miR-302 cluster and two transcription factors, NR2F2 and OCT4. Our data show high expression of miR-302 and OCT4 in pluripotent cells, while NR2F2 is expressed exclusively in differentiated cells. Target analysis predicts that NR2F2 is a direct target of miR-302, which we experimentally confirm by reporter luciferase assays and real-time polymerase chain reaction. We also demonstrate that NR2F2 directly inhibits the activity of the OCT4 promoter and thus diminishes the positive feedback loop between OCT4 and miR-302. Importantly, higher reprogramming efficiencies were obtained when we reprogrammed human adipose-derived stem cells into iPSCs using four factors (KLF4, C-MYC, OCT4, and SOX2) plus miR-302 (this reprogramming cocktail is hereafter referred to as “KMOS3”) when compared to using four factors (“KMOS”). Furthermore, shRNA knockdown of NR2F2 mimics the over-expression of miR-302 by also enhancing reprogramming efficiency. Interestingly, we were unable to generate iPSCs from miR-302a/b/c/d alone, which is in contrast to previous publications that have reported that miR-302 by itself can reprogram human skin cancer cells and human hair follicle cells. Taken together, these findings demonstrate that miR-302 inhibits NR2F2 and promotes pluripotency through indirect positive regulation of OCT4. This feedback loop represents an important new mechanism for understanding and inducing pluripotency in somatic cells.

Funder

Burroughs Wellcome Foundation

Foudation Leducq 11CVD02

AHA Postdoctoral fellowship

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3