Prick “filter bubbles” by enhancing consumers' novelty‐seeking: The role of personalized recommendations of unmentionable products

Author:

Lv Linxiang1ORCID,Kang Khloe Qi2ORCID,Liu Guanrong (Gus)3ORCID

Affiliation:

1. Department of Marketing, School of Business Administration Northeastern University Shenyang China

2. Institute of Behavioural and Decision Science, HKU Business School The University of Hong Kong Hong Kong, SAR China

3. UQ Business School University of Queensland St Lucia Brisbane Queensland Australia

Abstract

AbstractPersonalized recommendation algorithms inadvertently foster “filter bubbles,” wherein consumers are predominantly exposed to information that aligns with their existing preferences, limiting their exposure to novel items. This phenomenon raises ethical concerns regarding consumer well‐being, as it potentially compromises the quality of consumption decisions by reinforcing a homogeneity of information. Introducing novelty into recommendation systems is a viable strategy to counteract this issue, as the predominance of homogeneous information plays a crucial role in the formation of filter bubbles. However, there is a notable gap in the literature regarding self‐directed strategies for consumers to break through these filter bubbles. Grounded in social identification theory and utilizing a series of experimental studies, our research employs a range of analytical techniques, including ANOVA, mediation, and moderated‐mediation analysis. Our findings suggest that personalized recommendations of unmentionable products, defined as products eliciting disgust, offense, or anger due to delicacy, ethics, or fear, (vs. ordinary products) can increase consumers' novelty‐seeking by enhancing their motivation to change their implicit social labels given by intelligent recommendation systems. Nonetheless, we observe that this drive for novelty‐seeking diminishes during social‐focused recommendations because this recommendation is based on the behaviors of others in consumers' social networks rather than their actions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3