Thermal conduction network constructed by boron nitride core–shell structure with loading on silver particles

Author:

Qin Sijie1,Weng Ling12ORCID,Sun Xiaohang1,Yu Xin1,Guan Lizhu1,Wu Zijian12

Affiliation:

1. School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin 150080 China

2. Key Laboratory of Engineering Dielectrics and Application Ministry of Education, Harbin University of Science and Technology Harbin 150080 China

Abstract

AbstractWith the performance improvement and size reduction of electronic equipment, the internal circuit power consumption increases and heat is generated too much. The accumulation of heat will affect the stability, durability, and service life of electronic equipment. Therefore, efficient heat dissipation is the mainstream thinking direction to solve this problem. This experiment uses the synergetic effect of two particles. With epoxy (EP) resin as the matrix, boron nitride nanoparticles are coated with polydopamine (PDA), and the hydroxyl group on the surface of PDA is modified with coupling agent. The sulfhydryl group on the coupling agent is combined with silver (Ag) nanoparticles, and finally the epoxy resin composite containing boron nitride‐polydopamine‐silver (BPA) core–shell structure is obtained. With 15 wt%. BPA filler, the thermal conductivity of this material is 0.275 W/mK, 1.54 times that of pure epoxy resin 0.179 W/mK. The breakdown strength is 8.931 kV/m, 1.05 times that of pure epoxy resin 8.493 kV/m. The impact strength is 4.06 kJ/m2, 1.37 times that of pure epoxy resin 2.97 kJ/m2. At the same time, the shape of this material has good customization and is expected to be applied in the field of thermal management materials.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3