Affiliation:
1. Department of Information Technology Annamalai University Annamalainagar Tamil Nadu 608002 India
2. Computer Science & Engineering Chaitanya Bharathi Institute of Technology Hyderabad India
Abstract
SummaryWireless sensor network (WSN) comprises automatic sensors that are dispersed into a huge region. WSN is constructed from huge sensors, which is allocated to a particular task and the majority of task involves reporting and monitoring. However, as the network can be extended to several sensor nodes, there is a high chance of collision. Thus, this paper devises a novel technique for performing both collision detection and mitigation in WSN. Initially, the simulation of WSN is performed, and then the selection of cluster head is done using fractional artificial bee colony (FABC). Here, the network‐based parameter is extracted that involves received signal strength index (RSSI), priority level, delivery rate, and energy consumed. The deep recurrent neural network (DRNN) is adapted for collision detection. Here, the training of DRNN is done using lion crow search optimizer (LCSO). After collision detection, the collision mitigation is performed with a pre‐scheduling algorithm, namely dolphin ant lion optimizer (Dolphin ALO). Here, fitness is considered for collision mitigation that includes energy, sleep index (SI), delivery rate, priority level, E‐waste, and E‐save. The proposed method outperformed with the smallest energy consumption of 0.185, highest throughput of 0.815, highest packet delivery ratio (PDR) of 0.815, and highest collision detection rate of 0.930.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献