Insight into Cr Alloying on Face‐Centered Cubic to Body‐Centered Cubic Phase Transition in FeCr Alloy

Author:

Yang Hao12,Yang Jin‐Han1,Cai Ming‐Hui1ORCID,Tang Shuai1,Ma Han2,Jia Nan1,Liu Yan‐Dong1,Zhao Xiang1,Yan Hai‐Le1ORCID,Zuo Liang1

Affiliation:

1. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) School of Material Science and Engineering Northeastern University Shenyang 110819 Liaoning China

2. Institute of Research of Iron and Steel of Shasteel Suzhou 215625 Jiangsu China

Abstract

Effects of Cr alloying on phase stability, magnetism, and electronic structures in both body‐centered cubic (bcc) and face‐centered cubic (fcc) phases and on the transformation from fcc to bcc are studied by first‐principles calculations. Results show that the doped Cr atoms in fcc and bcc phases choose distinct occupation models. This phenomenon can be understood from the amount of electron density of states close to Fermi energy. For magnetism, Cr tends to be antiferromagnetically coupled with the surrounding Fe in the studied phases. The magnetic moment of Fe is greater than that of Cr in bcc, but the order is reversed in fcc. The moment of Fe is dictated by the distance between it and the doped Cr in bcc, whereas it is dominated by spatial orientation with Cr in fcc. For phase stability, it is found that the alloying of Cr prefers destabilizing bcc while tends to stabilize fcc, leading to a strong inhibition of phase transition from fcc to bcc. Notably, the role in the fcc phase is more prominent than that in bcc, which can be associated with the antiferromagnetism between Fe and Cr in fcc.

Funder

Key Technologies Research and Development Program

Natural Science Foundation of Shenyang Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3