Electrochemical Etching of Nitrogen Ion‐Implanted Gallium Nitride – A Route to 3D Nanoporous Patterning

Author:

Hoormann Matthias12ORCID,Lüßmann Frederik12ORCID,Margenfeld Christoph12ORCID,Ronning Carsten3ORCID,Meierhofer Florian12ORCID,Waag Andreas12ORCID

Affiliation:

1. Institute of Semiconductor Technology Technische Universität Braunschweig Hans‐Sommer‐Str. 66 38106 Braunschweig Germany

2. Nitride Technology Center (NTC) Technische Universität Braunschweig Langer Kamp 6 a/b 38106 Braunschweig Germany

3. Institute for Solid State Physics Friedrich Schiller University Jena 07743 Jena Germany

Abstract

Dopant‐selective electrochemical etching (ECE) of gallium nitride (GaN) results in well‐defined porous layers with tunable refractive index, which is extremely interesting for integrating photonic components into nitride technology. Herein, the impact of nitrogen implantation with and without subsequent rapid thermal annealing (RTA) on the porosification process of highly n‐doped GaN ([Si] 3 × 1019 cm−3) is investigated. Implantation is expected to compensate the donors of the n‐GaN layer to spatially suppress porosification during ECE. Optical transmission, electrochemical capacitance–voltage, and X‐Ray diffractometry of as‐grown and as‐implanted GaN suggest successful compensation of n‐dopants. Cross‐sectional scanning electron microscopy reveals the presence of mesopores (diameter 2–50 nm) after ECE of the as‐grown n‐GaN. In the case of implanted n‐GaN, it is found that ECE results in macropores (diameter > 50 nm), which can be suppressed by an intermediate RTA step. The implanted and annealed n‐GaN layers solely exhibit mesopores at the top and bottom, while the intermediate region remains unimpaired. Chronoamperometry and gravimetry provide additional insight and confirm the presence of macro‐ and mesopores in samples without and with RTA, respectively. The results demonstrate a successful implementation of etch‐resisting subsurface layers, which are required for 3D refractive index engineering in porous GaN.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3