“Green” Aqueous Synthesis, Structural, and Optical Properties of Quaternary Cu2ZnSnS4 and Cu2NiSnS4 Nanocrystals

Author:

Ivakhno‐Tsehelnyk Oleksandra1ORCID,Selyshchev Oleksandr1ORCID,Kondratenko Serhiy2ORCID,Dzhagan Volodymyr3ORCID,Zahn Dietrich R. T.1ORCID

Affiliation:

1. Semiconductor Physics and Center for Materials, Architectures and Integration of Nanomembranes (MAIN) Chemnitz University of Technology D‐09107 Chemnitz Germany

2. Faculty of Physics Taras Shevchenko National University of Kyiv Volodymyrs'ka St. 64 01601 Kyiv Ukraine

3. V. Lashkaryov Institute of Semiconductor Physics National Academy of Sciences of Ukraine Nauky Ave. 41 Kyiv 03028 Ukraine

Abstract

Element substitution in Cu2ZnSnS4‐like chalcogenides offers the potential to create alternative low‐cost photovoltaic and thermoelectric materials with tunable properties. In this work, the “green” synthesis of colloidal cation‐substituted Cu–Ni–Sn–S nanocrystals (CNTS NCs) in aqueous solutions using thioglycolic acid as a stabilizer is reported for the first time. The structural and optical properties of CNTS NCs are studied in colloidal solutions and thin films, and are compared with those of Cu–Zn–Sn–S (CZTS) NCs obtained under similar conditions. The NC sizes of both compounds are estimated to be in the range of 1.5–2.5 nm. Both NCs exhibit strongly non‐stoichiometric composition and a structure corresponding to cationically disordered kesterite Cu2ZnSnS4, which are common features of such quaternary metal‐based chalcogenides. The phonon Raman spectra of CNTS and CZTS NCs exhibit very similar lineshapes, but the CNTS phonon band has a larger width and lower frequency, presumably due to stronger cation disorder. The absorption of both types of NCs extends continuously through the visible range with an estimated bandgap of ≈2.2 eV and sub‐bandgap absorption due to an Urbach tail. The absorption coefficient of CNTS is determined to be α > 102 cm−1 at 700 nm and α > 104 cm−1 at 400 nm.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3