Affiliation:
1. College of Mechanical Engineering and Automation Huaqiao University Xiamen 361021 China
2. State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System Inner Mongolia First Machinery Group Co. Ltd. Baotou 014030 China
3. Packaging Engineering Institute College of Packaging Engineering Jinan University Zhuhai 519070 China
Abstract
The in‐plane crushing behaviors of hierarchical hexagonal honeycombs, structured by replacing every three‐wall vertex of both the conventional and reentrant hexagonal honeycombs with a small hollow‐circle, are investigated herein. The finite element (FE) models are first verified by an empirical formula from the literature and then further used to simulate the in‐plane crushing behaviors of the honeycombs under different compressive velocities. The deformation mode, plateau stress, and specific energy absorption (SEA) are studied based on the FE simulations. With respect to the conventional hierarchical honeycombs, the reentrant hierarchical honeycombs, in most instances, are found to exhibit higher plateau stress but lower SEA. It is remarkable that the hierarchical hexagonal honeycombs exhibit higher plateau stress and SEA than the basic hexagonal ones, which indicates that the hierarchical design is effective in improving both the impact resistance and energy absorption capabilities of the honeycombs.
Funder
Fundamental Research Funds for the Central Universities
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献