The Effects of Alloying Elements on the Bonding Strength of Diamond/Carbide/Cu Interface Based on First‐Principles Calculations

Author:

Cao Yu-xuan1,Wu Mao12ORCID,Fang Yuan1,Qian Ping34,Zhang Lin3,Qu Xuan-hui123

Affiliation:

1. Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 P. R. China

2. Beijing Laboratory of Metallic Materials and Processing for Modern Transportation Beijing 100083 P. R. China

3. Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China

4. Department of Physics University of Science and Technology Beijing Beijing 100083 P. R. China

Abstract

The effects of different alloying elements (Ti, Zr) on the bonding strength of the diamond (111)/carbide (111)/Cu (111) interface system have been systematically investigated by means of first‐principles calculations based on density functional theory. It is found that the metal (Ti, Zr)‐terminated carbide is more likely to participate in the formation of the carbide (111)/Cu (111) and carbide (111)/diamond (111) interface. However, the C‐terminated carbide (111) interfaces have higher bonding strength compared with the metal (Ti, Zr)‐terminated carbide interfaces. In the Cu/carbide/diamond interface system, the bonding strength of carbide/Cu interface is lower than that of the carbide/diamond interface, which means the Cu/carbide/diamond interface failure first occurs in the carbide/Cu interface. According to the charge density, the stronger charge interaction between Zr and Cu causes higher bonding strength of ZrC/Cu interface compared with TiC/Cu interface. Therefore, the Cu/ZrC/diamond interface has higher bonding strength compared with the Cu/TiC/diamond interface. The Csp (carbide)–Csp (diamond) covalent bond and the metal (Ti3d, Zr4d)–Csp (diamond) covalent bond are formed at the diamond/carbide interface, while the Cu3d–Csp (carbide) covalent bond and the metal (Ti3d, Zr4d)–Cu3d metallic bond are formed at the Cu/carbide interface.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3