Dispersive Spectra of Fröhlich Phonon Modes in Wurtzite Nitride Nanoholes with Circular and Square Cross Sections

Author:

Zhang Li12ORCID,Wang Guanghui3,Liu Xianli4,Wang Qi2ORCID

Affiliation:

1. School of Intelligent Manufacturing Guangzhou Panyu Polytechnic Guangzhou 511483 P. R. China

2. Dongguan Institute of Opto‐Electronics Peking University Dongguan 523429 P. R. China

3. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices South China Normal University Guangzhou 510006 P. R. China

4. Department of Technology Source Pearl River lighting Science and Technology Co. Ltd. Panyu 511442 P. R. China

Abstract

Semiconductor nanoholes have garnered significant interest due to their unique nanotopological structures, which can result in distinct physicochemical characteristics. This study delves into the properties of crystal vibrations in nanohole structures. The analytic Fröhlich phonon state and dispersion relationship in wurtzite nanoholes, with circular and square cross sections (CS), are derived using the macroscopic dielectric continuum model. It is found that two types of phonon modes, surface optical (SO) and half‐space (HS) modes, coexist in wurtzite nitride nanohole structures. These phonon modes and their dispersive behaviors in nanoholes significantly differ from those in nanowires due to the different nanotopological structures. Furthermore, the Fröhlich electron–phonon interaction Hamiltonians for SO and HS phonon modes in nanoholes are obtained based on a field quantization scheme. Numerical calculations on wurtzite AlN nanoholes reveal that the shape of the CS has a remarkable influence on the dispersive spectra of SO and HS phonon modes. Additionally, it is found that the dielectric medium significantly affects the dispersive features of SO modes, while its influence on the dispersive behavior of HS modes is negligible. The profound physical mechanisms behind these observations are deeply analyzed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3