Machine Learning for Orbital Energies of Organic Molecules Upwards of 100 Atoms

Author:

Gaul Christopher1ORCID,Cuesta-Lopez Santiago1ORCID

Affiliation:

1. International Center for Advanced Materials and Raw Materials of Castilla y León Fundación ICAMCYL Armunia 24009, León Spain

Abstract

Organic semiconductors are promising materials for cheap, scalable, and sustainable electronics, light‐emitting diodes, and photovoltaics. For organic photovoltaic cells, it is a challenge to find compounds with suitable properties in the vast chemical compound space. For example, the ionization energy should fit to the optical spectrum of sunlight, and the energy levels must allow efficient charge transport. Herein, a machine learning model is developed for rapidly and accurately estimating the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies of a given molecular structure. It is built upon the SchNet model [Schütt et al. (2018)] and augmented with a “Set2Set” readout module [Vinyals et al. (2016)]. The Set2Set module has more expressive power than sum and average aggregation and is more suitable for the complex quantities under consideration. Most previous models are trained and evaluated on rather small molecules. Therefore, the second contribution is extending the scope of machine learning methods by adding also larger molecules from other sources and establishing a consistent train/validation/test split. As a third contribution, a multitask ansatz is made to resolve the problem of different sources coming at different levels of theory. All three contributions in conjunction bring the accuracy of the model close to chemical accuracy.

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3