Multidimensional Rainbow Trapping of Sound in the Second‐Order Topological Sonic Crystals

Author:

Chen Jiu‐Jiu1ORCID,Yang Qiu‐Shuang2,Huo Shao‐Yong2ORCID,Fu Chun‐Ming2

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body College of Mechanical and Vehicle Engineering Hunan University Changsha 410082 P. R. China

2. College of Mechanical Engineering University of South China Hengyang 421001 P. R. China

Abstract

Topological rainbow trapping, which can separate and trap different frequencies of topological states into different positions, plays a key role in topological acoustic devices. However, few schemes have been proposed to realize multidimensional topological rainbow trapping effects with the hierarchy of edge and corner, which has partly restricted their practical applications in multifunctional integrated acoustic devices. Herein, a tactic to realize a multidimensional topological rainbow trapping of acoustic wave with the hierarchy of edge and corner in the second‐order topological sonic crystals is proposed. Based on the designing of a self‐ordering structure to both induce the topological phases of the bulk and edge states in the rectangular lattice, the edge states and corner states are obtained. Furthermore, the regularity between the located frequency of topological edge and corner states and the geometric parameters are discussed in detail. Finally, the rainbow trapping effects for topological edge states and corner states are investigated, respectively, in which different frequencies of topological acoustic edge and corner states are well separated and trapped in different positions without overlap. This proposal may provide a novel way for multidimensional wave manipulation and the integration of multifunctional acoustic devices.

Funder

Natural Science Foundation of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3