Impact of Boron Atom Clustering on the Electronic Structure of (B,In)N Alloys

Author:

Nies Cara‐Lena1ORCID,Schulz Stefan12ORCID

Affiliation:

1. Tyndall National Institute University College Cork Lee Maltings Cork T12R5CP Ireland

2. School of Physics University College Cork College Road Cork Ireland

Abstract

Tailoring the electronic and optical properties of nitride‐based alloys for optoelectronic device applications in the ultraviolet and red spectral range has attracted significant attention in recent years. Adding boron nitride (BN) to indium gallium nitride (In,Ga)N alloys can help to control the lattice mismatch between (In,Ga)N and GaN and may thus allow to reduce strain‐related defect formation. However, understanding of the impact of BN on the electronic properties of III‐N alloys, in particular the influence of experimentally observed boron atom clustering, is sparse. This work presents first‐principles calculations investigating the electronic properties of highly mismatched (B,In)N alloys with boron contents between 2% and 7%. Special attention is paid to the impact of the alloy microstructure. While the results show that the lattice constants of such alloys largely agree with lattice constants determined from a Vegard approximation, the electronic structure strongly depends on the local boron atom configuration. For instance, if boron atoms are dispersed throughout the structure and are not sharing nitrogen atoms, the band gap of (B,In)N alloys is largely unaffected and stays close to the gap of pristine InN. However, in the case of boron atom clustering, i.e., when boron atoms are sharing nitrogen atoms, the band gap can be strongly reduced, often leading to a metallic state in (B,In)N alloys. These strong band gap reductions are mainly driven by carrier localization effects in the valence band. Our calculations thus show that the electronic structure of (B,In)N alloys strongly depends on the alloy microstructure and that boron atom clustering plays an important role in understanding the electronic and optical properties of these emerging materials.

Funder

Science Foundation Ireland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3