Microstructure of High‐Chromium Ferritic–Martensitic Steels for Next‐Generation Reactors

Author:

Košovský Dávid1ORCID,Dekan Július1,Sedlačková Katarína1,Miglierini Marcel12

Affiliation:

1. Institute of Nuclear and Physical Engineering Faculty of Electrical Engineering and Information Technology Slovak University of Technology in Bratislava Ilkovičova 3 812 19 Bratislava Slovakia

2. Department of Nuclear Reactors Faculty of Nuclear Science and Physical Engineering Czech Technical University in Prague V Holešovičkách 2 180 00 Prague Czech Republic

Abstract

High‐chromium steels are key alloys used for the construction of technological devices in industry. Stainless steels are suitable for components that are exposed to a corrosive environment for a long time because chromium has anticorrosion properties due to segregation of chromium and the formation of a passivation layer. The physicochemical properties of the surface and the bulk of the material as well are determined by microstructure. Herein, steel NS219 is focused on, where the chromium concentration is around 13.5 wt%. In order to study the microstructure of steel, Mössbauer spectroscopy is used. Experimental results are evaluated using the binomial distribution model of the probability distribution of atoms in the nearest neighbor of the resonant atom 57Fe. Obtained spectral parameters, viz., the average magnetic hyperfine field, the average isomer shift, and the probability of the atomic configuration with no impurity atoms in the two‐shell vicinity of the iron atoms, reach saturation values from which the solubility limit of chromium in iron can be determined. On the other hand, the solubility limit of iron in Cr‐rich phase can be estimated from the value of the isomer shift of the single‐line in the spectrum annealed for the longest time.

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3