Time‐Resolved Optical Response of the Dicke's Model via the Nonequilibrium Green's Function Approach

Author:

Gopalakrishna Megha1ORCID,Pavlyukh Yaroslav2,Verdozzi Claudio3

Affiliation:

1. Department of Physics Division of Mathematical Physics Lund University 22100 Lund Sweden

2. Institute of Theoretical Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50‐370 Wroclaw Poland

3. Department of Physics Division of Mathematical Physics and ETSF Lund University 22100 Lund Sweden

Abstract

Due to their conceptual appeal and computational convenience, two‐level systems (TLSs) and generalizations are used to investigate nonlinear behavior in quantum optics and assess the applicability of theoretical methods. Herein, the focus is on second‐harmonic generation (SHG) and, as system of interest, on the Dicke model, which consists of several TLSs inside an optical cavity. The main aspect addressed is the scope of nonequilibrium Green's function (NEGF) to describe the effect of inhomogeneities and electron–electron (ee) interactions on the SHG signal. For benchmarking purposes, exact diagonalization (ED) results are also presented and discussed. SHG spectra obtained with NEGF and ED are found to be in very good mutual agreement in most situations. Furthermore, inhomogeneity in the TLS and ee interactions reduce the SHG signal, and the reduction is stronger with inhomogeneity than with interactions. This trend is consistently noted across different (small to large) system sizes. Finally, a modified NEGF approach is proposed to account for cavity leakage, where the quantum photon fields are coupled to a bath of classical oscillators. As expected, within this mixed quantum‐classical scheme, a decrease in the intensity of the fluorescent spectra takes place depending on the entity of leakage.

Funder

Vetenskapsrådet

HORIZON EUROPE European Innovation Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3