Computational Prediction of Structural, Optoelectronic, Thermodynamic, and Thermoelectric Response of the Cubic Perovskite RbTmCl3 via DFT‐mBJ + SOC Studies

Author:

Khera Ejaz Ahmad1ORCID,Nazir Abrar1,Ahmed Zubair1,Manzoor Mumtaz2,Ullah Hamid3,Ansar Sabah4,Kumar Yedluri Anil5,Sharma Ramesh6ORCID

Affiliation:

1. Department of Physics The Islamia University of Bahawalpur Bahawalnagar Campus Bahawalpur 63100 Pakistan

2. Institute of Physics Slovak Academy of Sciences 84511 Bratislava Slovakia

3. Department of Physics Riphah International University Lahore 54000 Pakistan

4. Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Saud University P.O. Box 10219 Riyadh 11433 Saudi Arabia

5. Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Saveetha University Chennai Tamil Nadu 602105 India

6. Department of Applied Science Feroze Gandhi Institute of Engineering and Technology Raebareli Uttar Pradesh 229001 India

Abstract

Perovskite halides, owing to their environmental stability, non‐toxicity, and remarkable efficiency, are emerging as potential candidates for photovoltaic, solar cell, and thermodynamic applications. The electronic, optical, thermoelectric, and thermodynamic properties of cubic perovskite RbTmCl3 are studied using density functional theory (DFT). The electronic, optical, and thermoelectric properties are calculated both with and without spin‐orbit coupling (SOC) using the Tran and Blaha functional in the structure of the modified Becke Johnson (mBJ) exchange potential, while structural and mechanical properties are assessed using the exchange‐correlation functional calculated using the Perdew Burke Ernzerhof Generalized Gradient Approximation (PBE‐GGA). The negative formation energy (−592.39 KJ mol−1) and tolerance factor (1.17) for structural stability and current their existences in the cubic phase are found. Evaluation of the obtained data with and without SOC shows that the SOC effect causes the Tm‐d states to be shifted toward the level of Fermi, thereby decreasing the energy band gaps from 1.42 to 1.32 eV. Nevertheless, only the shift of the third variable peak to lower energies indicates the impact of SOC on optical properties. The effectiveness of RbTmCl3 in optical devices operating in the visible and ultraviolet regions is demonstrated by the exceptional absorption of light in these ranges. Using TB‐mBJ + SOC functional, the electronic band structure research reveals a direct semiconducting band gap of 1.32 eV in comparison to earlier calculations like LDA, PBE‐GGA, and TB‐mBJ. The absorption spectrum, reflectivity, extinction coefficient, refractive index, and dielectric function are displayed in addition to the electrical properties. Additionally, the quasi‐harmonic Debye model, which accounts for lattice vibrations, was used to study the corresponding volume, heat capacity, expansion of the heat coefficient, and Debye temperature of the RbTmCl3 crystal. We have calculated the thermoelectric parameters such as the Seebeck coefficient, thermal conductivity, electrical conductivity, and power factor as a function of temperature (100–900 K).

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3